Cerebrolysin for vascular dementia (Review)

Chen N, Yang M, Guo J, Zhou M, Zhu C, He L

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2013, Issue 1

http://www.thecochranelibrary.com

Cerebrolysin for vascular dementia (Review)
Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
TABLE OF CONTENTS

HEADER ... 1
ABSTRACT ... 1
PLAIN LANGUAGE SUMMARY 2
BACKGROUND 2
OBJECTIVES 3
METHODS .. 3
RESULTS ... 6
 Figure 1 8
 Figure 2 10
 Figure 3 11
 Figure 4 11
 Figure 5 12
 Figure 6 13
DISCUSSION 14
AUTHORS’ CONCLUSIONS 15
ACKNOWLEDGEMENTS 16
REFERENCES 16
CHARACTERISTICS OF STUDIES 20
DATA AND ANALYSES 31
 Analysis 1.1. Comparison 1 Cognitive function, Outcome 1 The change of general cognitive function measured by MMSE. ... 33
 Analysis 1.2. Comparison 1 Cognitive function, Outcome 2 The change of general cognitive function measured by ADAS-cog+ score. ... 33
 Analysis 1.3. Comparison 1 Cognitive function, Outcome 3 The improvement of general cognitive function reported as responder rates. ... 34
 Analysis 1.4. Comparison 1 Cognitive function, Outcome 4 The change of executive function measured by the Trail-Making Test. ... 35
 Analysis 2.1. Comparison 2 Global function, Outcome 1 The improvement of global function reported as responder rates. ... 36
 Analysis 2.2. Comparison 2 Global function, Outcome 2 The change of global function measured by ADCS-ADL score. ... 36
 Analysis 3.1. Comparison 3 Adverse events, Outcome 1 Serious adverse events. ... 37
 Analysis 3.2. Comparison 3 Adverse events, Outcome 2 Non-serious adverse events. ... 37
 Analysis 3.3. Comparison 3 Adverse events, Outcome 3 Withdrawals due to adverse events. ... 38
 Analysis 4.1. Comparison 4 Subgroup analyses, Outcome 1 The change of general cognitive function measured by MMSE. ... 39
 Analysis 4.2. Comparison 4 Subgroup analyses, Outcome 2 The change of general cognitive function measured by ADAS-cog+ score. ... 40
 Analysis 4.3. Comparison 4 Subgroup analyses, Outcome 3 The improvement of general cognitive function reported as responder rates. ... 41
 Analysis 4.4. Comparison 4 Subgroup analyses, Outcome 4 The improvement of global function reported as responder rates. ... 42
 Analysis 4.5. Comparison 4 Subgroup analyses, Outcome 5 Non-serious adverse events. ... 43
 Analysis 5.1. Comparison 5 Sensitivity analyses, Outcome 1 The change of general cognitive function measured by MMSE. ... 44
 Analysis 5.2. Comparison 5 Sensitivity analyses, Outcome 2 The change of general cognitive function measured by ADAS-cog+ score. ... 44
 Analysis 5.3. Comparison 5 Sensitivity analyses, Outcome 3 The improvement of general cognitive function reported as responder rates. ... 45
 Analysis 5.4. Comparison 5 Sensitivity analyses, Outcome 4 The change of executive function measured by the Trail-Making Test. ... 45
Cerebrolysin for vascular dementia

Ning Chen¹, Mi Yang¹, Jian Guo¹, Muke Zhou², Cairong Zhu², Li He¹

¹Department of Neurology, West China Hospital, Sichuan University, Chengdu, China. ²Epidemic Disease & Health Statistics Department, School of Public Health, Sichuan University, Sichuan, China

Contact address: Li He, Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, 610041, China. heli2003new@126.com.

Editorial group: Cochrane Dementia and Cognitive Improvement Group.
Review content assessed as up-to-date: 4 November 2012.

Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background
Vascular dementia is a common disorder without definitive treatments. Cerebrolysin seems to be a promising intervention based on its potential neurotrophic and pro-cognitive effects, but studies of its efficacy have yielded inconsistent results.

Objectives
To assess the efficacy and safety of Cerebrolysin for vascular dementia.

Search methods
We searched ALOIS - the Cochrane Dementia and Cognitive Improvement Group's Specialized Register on 4 November 2012 using the terms: Cerebrolysin, Cere, FPF1070, FPF-1070. ALOIS contains records of clinical trials identified from monthly searches of a number of major healthcare databases, numerous trial registries and grey literature sources.

Selection criteria
All randomized controlled trials of Cerebrolysin for treating vascular dementia without language restriction.

Data collection and analysis
Two authors independently selected trials and evaluated the methodological quality, then extracted and analysed data from the included trials.

Main results
Six randomized controlled trials with a total of 597 participants were eligible. The meta-analyses revealed a beneficial effect of Cerebrolysin on general cognitive function measured by mini-mental state examination (MMSE) (weighted mean difference (WMD) 1.10; 95% confidence interval (CI) 0.37 to 1.82) or Alzheimer's Disease Assessment Scale Cognitive Subpart, extended version (ADAS-cog+) (WMD -4.01; 95% CI -5.36 to -2.66). It also improved patients' global clinical function evaluated by the response rates (relative risk (RR) 2.71, 95% CI 1.83 to 4.00). Only non-serious adverse events were observed in the included trials, and there was no significant difference in occurrence of non-serious side effects between groups (RR 0.97, 95% CI 0.49 to 1.94).
Authors’ conclusions

Cerebrolysin may have positive effects on cognitive function and global function in elderly patients with vascular dementia of mild to moderate severity, but there is still insufficient evidence to recommend Cerebrolysin as a routine treatment for vascular dementia due to the limited number of included trials, wide variety of treatment durations and short-term follow-up in most of the trials.

PLAIN LANGUAGE SUMMARY

Cerebrolysin for vascular dementia

Vascular dementia (VaD) is a common disorder which currently lacks definitive treatments. Cerebrolysin, a peptide preparation produced from purified pig brain proteins, seems to be a promising intervention based on animal studies and clinical trials in other conditions. We identified six trials involving 597 participants suitable for inclusion in this review. Pooled results showed improvements in cognitive function and global function in patients with VaD of mild to moderate severity, with no obvious side effects related to Cerebrolysin. However, due to the limited number of included trials, varying treatment durations and short-term follow-up, there is insufficient evidence to recommend Cerebrolysin as a routine treatment for patients with VaD.

BACKGROUND

Description of the condition

Vascular dementia (VaD) is a common disorder among the elderly, which can also occur in younger people. Incidence data vary considerably: it is the second most common form of dementia after Alzheimer’s disease (AD) in the western world (Neuropathology Group 2001) and in China (Dong 2007; Zhang 2012), while it is deemed the most common cause of dementia in Japan (Aggarwal 2007). The differences may be due in part to different study methodologies and diagnostic criteria. Rates of both major types of dementia increase with age: it has been estimated that the prevalence rate of VaD doubles every 5.3 years compared with every 4.5 years for AD (O’Brien 2003).

The term vascular dementia refers to a constellation of cognitive and functional impairments. It can be viewed as a subset of the larger syndrome of vascular cognitive impairment (VCI) associated with cerebrovascular brain injury (Aggarwal 2007). As an etiologic category, VaD includes dementia caused by ischemic or hemorrhagic cerebrovascular disease (CVD) or by ischemic-hypoxic brain lesions of cardiovascular origin (Román 2002). The following has been proposed as a classification of the subtypes of VaD (O’Brien 2006):

(i) multi-infarct dementia (cortical VaD); (ii) small-vessel dementia (subcortical VaD); (iii) strategic infarct dementia; (iv) hypoperfusion dementia; (v) hemorrhagic dementia; (vi) AD with cerebrovascular disease (CVD); (vii) hereditary vascular dementia (CADASIL).

Although this classification is based on clinical differences and underlying pathologic changes, it is difficult to classify a patient into one definite subtype in many cases, because these subtypes are usually not pure and mixtures of pathology frequently combine to contribute to cognitive impairment (Moorhouse 2008). There are several diagnostic criteria for VaD, such as Diagnostic and Statistical Manual of Mental Disorders, third, third revised, fourth edition (DSM-III, DSM III-R, DSM-IV) (APA 1980; APA 1987; APA 1994), Alzheimer’s Disease Diagnostic and Treatment Centers (ADDTTC) criteria (Chui 1992), International Statistical Classification of Diseases, 10th revision (ICD 10) (WHO 1992), and National Institute of Neurological Disorders and Stroke Association Internationale Pour la Recherche et l’Enseignement en Neurosciences (NINDS-AIREN) criteria (Román 1993). All of these criteria are based on two major requirements: clinical diagnosis of dementia and determination of its vascular origin. The latter requirement is problematic because of the frequent overlap between cerebrovascular and degenerative disorders, particularly in the elderly (Benisty 2008). As a result, the current diagnostic criteria for VaD are not concordant, which may make data analysis and comparisons difficult (Moorhouse 2008). A wide range of instruments has been used in the assessment of cognitive function in patients with VaD. However, since the most typical expression of VaD is executive dysfunction, the widely used mini-mental state examination (MMSE) may underestimate the cognitive decline in patients with VaD, because it contains few items related to executive functions (Folstein 1975; Moorhouse 2008). The Montreal Cognitive Assessment (MoCA) may be more appropriate in such cases (Nasreddine 2005; Korczyn 2012).
There are currently no definitive treatments for VaD. Interventions are possible at a number of levels: primary prevention, secondary prevention, symptomatic treatments and disease modifying or curative approaches (O’Brien 2006). Available data on the treatment of vascular risk factors show surprisingly equivocal support for their value in primary and secondary prevention (Moorhouse 2008). Such strategies are undoubtedly beneficial in preventing stroke or stroke recurrence, which contributes importantly to global cognitive decline (Srikanth 2006). However, a meta-analysis (Feigin 2005) and a Cochrane systematic review (McGuinness 2009) of randomized controlled trials of antihypertensives found, respectively, a non-significant trend and no convincing evidence that lowering blood pressure prevented cognitive decline and dementia. Potential symptomatic treatment for VaD, such as vasodilators, nootropics, antioxidants (O’Brien 2006; Moorhouse 2008) and some traditional Chinese herbal medicines (Wu 2007; Hao 2009), have been evaluated in multiple trials and systematic reviews, but agents with proven effects and safety are still lacking. The effects of drugs used to treat AD are modest in patients with VaD (Moorhouse 2008): a meta-analysis concluded that cholinesterase inhibitors and memantine provided only small benefits of uncertain clinical significance (Kavirajan 2007).

How the intervention might work

Cerebrolysin has neurotrophic activity demonstrated in various models in vitro and in vivo. For example, it exerts nerve growth factor (NGF)-like activity on neurons from dorsal root ganglia (Satou 1993). Its multiple effects include promotion of neuroprotection, neuroplasticity and neurogenesis. Several in vitro and in vivo studies suggest possible mechanisms for these actions:

1. Cerebrolysin may reduce amyloid plaque formation by regulating amyloid precursor protein (APP) (Rockenstein 2006).
2. It may protect neurons from apoptosis and degeneration, probably through the inhibition of calpain (Akai 1992; Hartbauer 2001).
3. It may modulate neuronal connectivity by increasing neuritic outgrowth, protecting established neurites against degeneration and increasing synaptic density, thereby supporting neuroplastic processes (Masliah 1999; Rockenstein 2003).
4. It may also reduce the physiological apoptosis of newborn cells and increase the number of new neurons, thus stimulating neurogenesis (Tatebayashi 2003).

Various animal models have been established to demonstrate the neurotrophic and pro-cognitive effects of Cerebrolysin (Veinbergs 2000; Rockenstein 2005).

Why it is important to do this review

Cerebrolysin is reported to be effective in treatment of VaD in some clinical trials, but there is no compelling evidence. So, to guide clinical practice and studies, it is necessary to systematically review the efficacy and safety.

Objectives

To assess the efficacy and safety of Cerebrolysin for vascular dementia.

Methods

Criteria for considering studies for this review
Types of studies
All relevant randomized controlled trials (RCTs), blinded or unblinded, were eligible for inclusion irrespective of any language restrictions.

Types of participants
Participants of all ages and both sexes with a diagnosis of vascular dementia. The diagnoses were made using accepted, validated criteria, e.g. DSM-III, DSM III-R, DSM-IV, ADDTC, ICD10, NINDS-AIREN. Studies involving only a subset of participants with VaD were also included, if the data of relevant patients could be extracted.

Types of interventions
Cerebrolysin at any dose and for any length of treatment period versus control interventions. The following treatment comparisons were investigated:
(1) Cerebrolysin alone compared with placebo.
(2) Cerebrolysin alone compared with no treatment.
(3) Cerebrolysin plus another treatment compared with placebo plus the same other treatment.
(4) Cerebrolysin plus another treatment compared with the same other treatment alone.

Types of outcome measures
All outcomes included in the analysis of the current review were measured with a validated scale.

Primary outcomes
(1) Cognitive function.
(2) Global function.
(3) All cause death.

Secondary outcomes
(1) Adverse events.
(2) Quality of life.
(3) Carer burden.

Search methods for identification of studies
We searched for all RCTs of Cerebrolysin for vascular dementia, irrespective of any language restrictions.

Electronic searches
We searched ALOIS (www.medicine.ox.ac.uk/alois) - the Cochrane Dementia and Cognitive Improvement Group's Specialized Register on 4 November 2012. The search terms used were: Cerebrolysin, Cere, FPF1070, FPF-1070. ALOIS is maintained by the Trials Search Co-ordinator for the Cochrane Dementia and Cognitive Improvement Group and contains studies in the areas of dementia prevention, dementia treatment and cognitive enhancement in healthy persons. The studies are identified from:
1. monthly searches of a number of major healthcare databases: MEDLINE, EMBASE, CINAHL, PsycINFO and LILACS;
2. monthly searches of a number of trial registers: ISRCTN; UMIN (Japan's Trial Register); the WHO portal (which covers ClinicalTrials.gov; ISRCTN; the Chinese Clinical Trials Register; the German Clinical Trials Register; the Iranian Registry of Clinical Trials and the Netherlands National Trials Register, plus others);
3. quarterly search of The Cochrane Library's Central Register of Controlled Trials (CENTRAL);
4. six-monthly searches of a number of grey literature sources: ISI Web of Knowledge Conference Proceedings; Index to Theses; Australasian Digital Theses.
To view a list of all sources searched for ALOIS see About ALOIS on the ALOIS website.

Details of the search strategies used for the retrieval of reports of trials from the healthcare databases, CENTRAL and conference proceedings can be viewed in the 'methods used in reviews' section within the editorial information about the Dementia and Cognitive Improvement Group.

Additional searches were performed in many of the sources listed above to ensure that the search for the review was as up-to-date and as comprehensive as possible. The search strategies used can be seen in Appendix 1.

The search (November 2012) retrieved a total of 96 results. After a first-assess and a de-duplication of these results the authors were left with 25 references to further assess.

Searching other resources
We checked the references of published studies to identify additional trials. We also reviewed the bibliographies of the trials identified, contacted the authors and known experts in the field to identify additional published or unpublished data. We approached the medical information department of the relevant companies with a request for copies of all conference posters which described clinical studies with Cerebrolysin as well.

Data collection and analysis
Selection of studies
Two review authors (N Chen and M Yang) independently scrutinized titles and abstracts identified from the register. The two authors obtained the full text of all potentially relevant studies for independent assessment, and then decided which trials fitted the inclusion criteria. When there were disagreements about inclusion criteria, the two authors discussed the discrepancy carefully. A third review author (L He) helped to arbitrate if there was a failure in resolving disagreement.

Data extraction and management
Two authors (N Chen and M Yang) independently extracted data from the trials to fill in a data extraction form. It included the study name, type of design, study population size, duration, number of participant withdrawals, participants analysed in the different treatment groups, inclusion and exclusion criteria, intervention (route and dosage), and outcomes. One author (N Chen) entered data into Review Manager (RevMan 5) and a second author (M Yang) checked the data entry.

Assessment of risk of bias in included studies
The assessment of risk of bias took into account the security of randomization, allocation concealment, blinding, completeness of outcome data, selective outcome reporting, and any other potential sources of bias. These items were assessed by two authors (N Chen and M Yang) independently according to the Cochrane risk of bias tool (Higgins 2011b). Then all trials were judged for each item and subdivided into the following three categories:
A. Low risk of bias for all key domains: low risk of bias.
B. Unclear risk of bias for one or more key domains: unclear risk of bias.
C. High risk of bias for one or more key domains: high risk of bias.

Measures of treatment effect
We analyzed the data using Cochrane RevMan 5 software. A weighted treatment effect was calculated using a fixed-effect model across trials unless there was substantial heterogeneity, in which case a random-effects approach was used. Results were expressed as relative risks (RRs) for dichotomous outcomes and as mean differences (MDs) for continuous outcomes, both with 95% confidence intervals (CIs). If the differences in effect with the standard error were available, but the standard deviations of the individual study groups were not, we used the RevMan Generic Inverse Variance (GIV) facility to pool studies.

Unit of analysis issues
In order to avoid unit-of-analysis errors resulting from combining results from more than one time point for each study in a standard meta-analysis, we used final time-point data from each trial, and analysed subgroups based on treatment duration in the presence of any evidence of heterogeneity (Deeks 2011). For studies that compared more than two groups, we selected the pair of groups relevant to the review questions or combined intervention groups to include in the analyses.

Dealing with missing data
We tried to obtain missing data from the study authors whenever possible. We analysed data on an intention-to-treat (ITT) basis, then all participants with available data were included in the analysis in the group to which they were allocated, regardless of whether or not they received the allocated intervention.

Assessment of heterogeneity
We assessed heterogeneity amongst trials by using the Chi² test with a 10% level of statistical significance (P < 0.1) and I² > 50% (Higgins 2002; Higgins 2003). If significant heterogeneity was present, we performed a cause analysis, and then undertook subgroup and sensitivity analyses. If there was still unexplained heterogeneity, the study results were combined using a random-effects model. For trials that were clinically heterogeneous or presented insufficient information for pooling, a descriptive analysis was performed (Higgins 2011a).

Assessment of reporting biases
We planned to use a funnel plot to investigate the possibility of publication bias if necessary, and then to evaluate and express the possible reporting biases. In the current review, tests for funnel plot asymmetry were not used because there were less than 10 studies included in each meta-analysis, when the power of the tests would be too low to distinguish chance from real asymmetry (Sterne 2011).

Data synthesis
Meta-analyses of the studies reporting on the efficacy of Cerebrolysin for VAD were performed, in which the results were displayed as a forest plot. Only trials that provided a measure of effect size were included. Descriptive analyses of other included trials were also undertaken.

Subgroup analysis and investigation of heterogeneity
We carried out subgroup analyses to explore potential sources of heterogeneity if possible, including: ages, type and severity of VAD, drug dosage and route of administration and duration of treatment.
Sensitivity analysis

We also undertook a sensitivity analysis on the basis of methodological quality by repeating the calculation after omitting the trials with low scores on individual quality items.

RESULTS

Description of studies

See: Characteristics of included studies; Characteristics of excluded studies.

See Tables: Characteristics of included studies; Characteristics of excluded studies.

Results of the search

A total of 21 potentially eligible trials were identified by scrutinising the titles and abstracts. We excluded 15 trials after we had screened their full text. As a result six trials fulfilled the inclusion criteria.

Included studies

Six trials (Vereschagin 1991; Xiao 1999; Liang 2001; Zhang 2003; Muresanu 2008; Guekht 2011) with a total of 597 participants were included in the present review after using the methods for selecting studies described in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011a).

Of the six included trials, two were conducted in multiple centers in the Russian Federation (Guekht 2011) and China (Xiao 1999), respectively, while the others were in a single center. Sample sizes differed between trials, ranging from 29 to 242 participants (the above two multicenter studies had more than 100 patients). The demographic characteristics were not significantly different between groups in each trial. Inclusion and exclusion criteria were explicitly stated in all studies, except the Vereschagin trial (Vereschagin 1991), which was only published in abstract form. Despite our attempts we could not obtain full details of this trial. Of the remaining five trials, two recruited patients with a confirmed diagnosis of VaD (both probable and possible VaD, Guekht 2011) or probable VaD (Muresanu 2008) according to the NINDS-AIREN criteria (Román 1993), two (Xiao 1999; Zhang 2003) enrolled VaD patients using the DSM-IV criteria (APA 1994), and the other one included patients with multi-infarct dementia based on the DSM-III-R (APA 1987) and ICD-10 (WHO 1992) criteria. To confirm the VaD diagnosis, computed tomography (CT) or magnetic resonance imaging (MRI) scan of brain, or both, were used in all the five trials, and a Hachinski Ischemic Score (HIS, Hachinski 1975) of ≥ 7 or a modified HIS (Pantoni 1993) of > 4 was included in all the inclusion criteria as well. The severity of dementia on entry was required to be mild to moderate in four trials judged by either MMSE (Xiao 1999; Muresanu 2008; Guekht 2011) or CDR (Clinical Dementia Rating) scores (Zhang 2003), but the range of MMSE scores was not uniform (10 to 24 in Guekht 2011, 9 to 26 in Muresanu 2008, and 15 to 25 in Xiao 1999, respectively); the remaining two trials did not report the severity of VaD. The mean age of participants in each study group ranged from 60.4 to 70.8 years, indicating that most of them were old males or postmenopausal females, although this requirement was specified in only three included trials (Xiao 1999; Muresanu 2008; Guekht 2011). Mean duration of dementia was between 4.6 months and 4.3 years in three trials (Liang 2001; Zhang 2003; Muresanu 2008), and no relevant information was available from the other three trials. Common exclusion criteria across four trials (Xiao 1999; Zhang 2003; Muresanu 2008; Guekht 2011) included: patients with significant concomitant neurological or psychiatric disorders, any significant systemic illness or unstable medical condition, and patients who had recently received other drugs that might impact on cognitive function. Relevant information of patients’ exclusion were not available in the other two trials (Vereschagin 1991; Liang 2001).

In all the included trials, Cerebrolysin was administered as an intravenous infusion, diluted in physiologic saline or glucose injection. Four trials compared Cerebrolysin with placebo (Vereschagin 1991; Xiao 1999; Muresanu 2008; Guekht 2011), while the other two trials compared Cerebrolysin plus routine treatment for cerebrovascular disease with the same routine treatment only (Liang 2001; Zhang 2003). The dose of Cerebrolysin used in those trials ranged from 10 ml to 30 ml daily, but the length of treatment period varied between trials. Three studies gave the intervention for four continuous weeks as one cycle -- two of them treated patients for one cycle only (Xiao 1999; Muresanu 2008), while one repeated two cycles with an interval of eight weeks (Guekht 2011). Two trials administered such medicine continuously for 15 days (Liang 2001) and 28 days (Vereschagin 1991), respectively. The remaining trial (Zhang 2003) took the longest period of treatment with Cerebrolysin, i.e. 10 days a cycle repeated for two cycles per year, and all patients were treated for a period of three years. Only one study had three comparison arms (Cerebrolysin 10 ml versus 30 ml versus physiologic saline) (Muresanu 2008). The duration of follow-up varied considerably from 15 days to 3 years after enrolment. Losses to follow-up and withdrawals were all reported in the six trials; none was lost in the entire course of three trials (Vereschagin 1991; Liang 2001; Zhang 2003) and in the pilot phase of one study (Muresanu 2008; Muresanu 2008a). Only one trial (Guekht 2011) performed an intention-to-treat (ITT) analysis based on the last observation carried forward (LOCF) method. The most common outcome was the change of cognitive function from baseline to post-treatment evaluation, but the efficacy parameters were different between trials, including MMSE.
score, ADAS-cog+ (Alzheimer’s Disease Assessment Scale Cognitive Subpart, Extended Version) score, HDS (Hasegawa Dementia Scale), WISA (Wechsler Intelligence Scale for Adult), Trail-Making Test A and Clock-Drawing Test. The global function of patients before and after treatment was also reported in three studies (Vereschagin 1991; Xiao 1999; Guekht 2011), evaluated by the following measures either separately or in combination: CIBIC+ (Clinician’s Interview-Based Impression of Change plus Caregiver Input), CIBIS+ (Clinician’s Interview-Based Impression of Severity), ADL (Activities of Daily Living), CGI (Investigator’s Clinical Global Impression), SCAG (Sandoz Clinical Assessment - Geriatric) or NAI (Nuremberg Activities Inventory). Four included trials reported adverse events associated with Cerebrolysin in detail, while the other two (Vereschagin 1991; Liang 2001) did not provide any relevant information. None of the trials described data about all cause death, quality of life or carer burden measured with any valid questionnaire.

Excluded studies
Fifteen potentially relevant studies were excluded for one or more reasons as follows: not a RCT according to the full text (Meng 2001; Damulin 2008; Tapu 2009; Suvorova 2010); validated diagnostic criteria not used to identify patients with VaD (Zheng 1999; Cao 2000; Vereschagin 2001; Damulin 2008); another treatment, which might impact the effect, used in the control group but not the intervention group (Jia 1991; Li 1996; Wang 1996; Pan 1999; Wang 2003; Chen 2006; Dai 2011); Cerebrolysin used in both groups as a routine treatment (Xian 2004); outcomes evaluated with invalidated scales (Meng 2001).

Risk of bias in included studies
The risk of bias in included trials was evaluated in the following aspects: quality of randomization, allocation concealment, blinding of participants, personnel and outcome assessment, completeness of outcome data, selective reporting, etc. According to the summary assessment of the risk of bias for each important outcome (Higgins 2011b), one of the trials was rated as good quality (a low risk of bias) (Guekht 2011), four were rated as fair quality (an unclear risk of bias) (Vereschagin 1991; Xiao 1999; Zhang 2003; Muresanu 2008), and one as poor quality (a high risk of bias) (Liang 2001) (see Characteristics of included studies; Figure 1).
Figure 1. Risk of bias summary: review authors’ judgements about each risk of bias item for each included study.

<table>
<thead>
<tr>
<th></th>
<th>Random sequence generation (selection bias)</th>
<th>Allocation concealment (selection bias)</th>
<th>Blinding of participants and personnel (performance bias)</th>
<th>Blinding of outcome assessment (detection bias)</th>
<th>Incomplete outcome data (attrition bias)</th>
<th>Selective reporting (reporting bias)</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guekht 2011</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Liang 2001</td>
<td>?</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>Muresanu 2008</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>Zhang 2003</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Allocation

All included trials stated they allocated participants to each study group randomly, but only two of them (Zhang 2003; Guekht 2011) provided information about the random sequence generation: Guekht and colleagues used a computer software (PROC PLAN in SAS version 8.2) to generate randomization code (Guekht 2011), and the Zhang study allocated patients by drawing lots (Zhang 2003). The Guekht study also specified that the random allocation sequence was concealed throughout the trial, using sealed, sequentially numbered, identical cardboard boxes containing blinded study medication according to the allocation sequence (Guekht 2011). However, insufficient descriptions in the reports could help us judge whether adequate allocation concealment was performed in the other five included trials (Vereschagin 1991; Xiao 1999; Liang 2001; Zhang 2003; Muresanu 2008).

Blinding

A double-blind design was used in five included trials (Vereschagin 1991; Xiao 1999; Zhang 2003; Muresanu 2008; Guekht 2011), of which three (Zhang 2003; Muresanu 2008; Guekht 2011) clearly stated that all participants and personnel involved in therapy performance and outcome assessment were blinded to treatment assignment during the entire study period. The Xiao study (Xiao 1999), stated as double-blind, used yellow opaque infusion bottles containing Cerebrolysin or placebo to secure blinding, which would indicate that the participants and personnel involved in treatment performance might be blinded to patients assignment, but whether the efficacy evaluators were also blinded could not be judged according to the reports. The Vereschagin study (Vereschagin 1991) just briefly referred to blinding method in broad terms as ‘double-blind’, but no other relevant information was available to tell who was blinded. The remaining trial (Liang 2001) was an unblinded study according to the full text: Cerebrolysin was an additional medication to routine treatment for ischemic stroke in the intervention group, whereas the control group was treated with routine treatment only without any placebo or blank solution, which made it impossible to perform blinding. Furthermore, the author did not use any term to suggest a blinding design in the article.

Incomplete outcome data

All included studies reported the duration of follow-up, which varied between trials. Three studies (Vereschagin 1991; Xiao 1999; Liang 2001) followed up participants less than one month after starting the treatment (15 days in the Liang 2001 trial and 4 weeks in the Vereschagin 1991 and Xiao 1999 trials). There were no dropouts in the first two studies, while one patient withdrew in the other trial (Xiao 1999) because of refusal of treatment, whose data were not included in the analyses. We found two reports of results in different phases of the Muresanu 2008 trial: the pilot phase evaluated the effects of Cerebrolysin after a four-week treatment, when no participants had been withdrawn (Muresanu 2008a); the extension study investigated efficacy outcomes through 12 weeks after the end of treatment, but eight participants (three and four in the two Cerebrolysin groups, respectively, and one in the placebo group) were lost to the follow-up visit, with balanced numbers and reasons between groups. Data on the remaining 33 patients were analysed (Muresanu 2010). The Guekht 2011 trial, with the largest sample size (242 participants in total), lost 25 patients during the entire 24-week study, and the number and reasons for discontinuation were similar in the two groups. Those withdrawn patients were still followed whenever possible to perform ITT analyses based on the last observation carried forward data, but patients included in the ITT analysis set should have received at least one dose of study medication and had a baseline plus at least one post-baseline assessment for both primary efficacy measures. As a result, four and six enrolled patients in each group were excluded from analysis. Although two patients were withdrawn because of adverse events, the risk of attrition bias due to incomplete outcome data was judged to be low since both of them were allocated to the placebo group. The sixth trial (Zhang 2003) with only 29 patients in a single center did not lose any of them although the study period was as long as three years. Missing data in the included trial reports were still unavailable for us to perform an ITT analysis in the present review.

Selective reporting

The study protocol is available for only one included trial (Guekht 2011) on the website of ClinicalTrials.gov. All of the study’s pre-specified (both primary and secondary) outcome measures that are of interest in the present review were reported in the pre-specified way, which permitted us to judge its risk of bias due to selective reporting as low. We also made a judgement of ‘High risk’ in this aspect for one trial (Liang 2001), since it did not even mention the results for safety evaluation, which would be expected to have been reported as a key outcome for such an intervention study (Higgins 2011b). For the other four trials (Vereschagin 1991; Xiao 1999; Zhang 2003; Muresanu 2008), however, we could not make any clear judgement as ‘Low’ or ‘High’ risk of bias due to selective reporting, because their protocols were unavailable and insufficient information could be obtained.

Other potential sources of bias

Another potential risk of performance bias might come from a relaxed design of intervention in the Liang 2001 study. Patients
in both groups were treated with other medicine according to
tab\[76x598] their condition, but which drugs were used were not recorded.
Whether those drugs were balanced between groups or whether
they would impact the results were not specified in the article. No
other potential bias was found in four trials (Xiao 1999; Zhang
2003; Muresanu 2008; Guekht 2011) and insufficient informa-
tab\[76x644] tab\[94x644] tion could be obtained from the other trial (Vereschagin 1991),
which was only published in abstract form.

Effects of interventions

Primary outcomes

1. Cognitive function

General cognitive function was evaluated as a primary efficacy pa-
tab\[76x379] rameter in all the included trials, but the instruments used and the
type of data varied between trials. Two trials (Xiao 1999; Guekht
2011) with 379 participants evaluated the effect of Cerebrolysin on
general cognitive function measured by the MMSE score-change
from baseline. The Guekht 2011 trial used a dose of 20 ml daily
over two treatment cycles (five days a week repeated for four weeks
is one cycle), while the Xiao 1999 study used a daily dose of 30
ml for only one cycle. The Xiao 1999 trial reported means but
not standard deviations for changes from baseline. However, it
also reported the P value (0.028) for the comparison between
groups, and so we could calculate the missing change-from-base-
tab\[76x656] line standard deviation using the method described in Section
7.7.3.3 of the Cochrane Handbook for Systematic Reviews of Interven-
tions (Higgins 2011c). The meta-analysis suggested a benefi-
tial effect of Cerebrolysin on general cognitive function measured
with the MMSE (WMD 1.10; 95% CI 0.37 to 1.82, P = 0.003;
Analysis 1.1; Figure 2). Although the Zhang 2003 study also used
the MMSE, it only reported response rates and not raw or change
scores, so its data could not be included in this meta-analysis.

Figure 2. Forest plot of comparison: 1 Cognitive function, outcome: 1.1 The change of general cognitive function measured by MMSE.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Cerebrolysin Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>N, Fixed, 95% CI</th>
<th>Mean Difference N, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guekht 2011</td>
<td>4.653</td>
<td>5.7</td>
<td>117</td>
<td>3.168</td>
<td>5.405</td>
<td>115</td>
<td>25.9%</td>
<td>1.40 [0.08, 2.91]</td>
<td></td>
</tr>
<tr>
<td>Xiao 1999</td>
<td>2.66</td>
<td>2.91</td>
<td>75</td>
<td>1.72</td>
<td>2.81</td>
<td>72</td>
<td>74.1%</td>
<td>0.96 [0.12, 1.80]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>192</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td>1.10 [0.37, 1.82]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Cns² = 0.36, df = 1 (P = 0.54); P = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect Z = 2.96 (P = 0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The effect on global cognitive function was also evaluated by
the change of ADAS-cog+ scores in two trials (Muresanu 2008;
Guekht 2011) with 273 patients. ADAS-cog+ is more sensitive in
mild cognitive impairment than the original ADAS-cog version,
since it covers three more cognitive domains (visual attention, ex-
tecutive function and delayed recall), impairments of which are
commonly seen in patients with vascular cognitive dysfunction
(Mohs 1997). For the Muresanu 2008 study we only included data
from the four-week pilot study although relevant outcomes were
measured through a 12-week extension, because the extension was
open-label and nearly 20% of patients (8/41 in total, 3/16, 4/15
and 1/10 from the 10 ml Cerebrolysin, 30 ml Cerebrolysin,
and placebo groups, respectively) were lost to follow-up, leading
to high risks of detection and attrition bias. We combined the
two experimental intervention groups treated by different doses
of Cerebrolysin into a single group using the method described
in the Cochrane Handbook for Systematic Reviews of Interven-
tions (Higgins 2011d). This analysis also demonstrated a significant
superiority of Cerebrolysin to placebo (WMD -4.01; 95% CI
-5.36 to -2.66, P < 0.00001; Analysis 1.2; Figure 3). In the Zhang
2003 trial, authors reported the WISA scores at the end of three-
year follow-up as well. Its results showed significant superiority
of Cerebrolysin to control in most of the verbal and performance
subtests, including information, comprehension, arithmetic, sim-
ilarities, digit span, vocabulary, digit symbol, picture completion
and picture arrangement (P < 0.05), but the full intelligence quo-
tient (IQ) was not given or compared between groups in the report
(Zhang 2003).
Dichotomized data, for example the number of responders, allowed us to compare and pool data from trials using different measurement instruments. In the present review, for the ADAS-cog+, responders were defined as those with at least a 4-point improvement from baseline to the end of follow-up (Guekht 2011), and for the HDS and MMSE, responders were those with at least a 2-point increase compared to baseline (Liang 2001; Zhang 2003). All these definitions indicated a moderate to marked improvement in cognition from baseline. Data on response rates from three included trials (Liang 2001; Zhang 2003; Guekht 2011) with a total of 338 participants were pooled into a meta-analysis, which showed a statistically significant effect of Cerebrolysin on increasing the proportion of responders (RR 1.51; 95% CI 1.30 to 1.75, P < 0.00001; Analysis 1.3; Figure 4).

Executive function, one of the specific cognitive functions commonly impaired in VaD, was evaluated in two included trials, using the Clock-Drawing Test and Trail-Making Test in the Guekht 2011 trial, and two Trail-Making Tests (ZVT-1 and ZVT-2) in the Xiao 1999 trial. We pooled the data on changes in Trail-Making Test time from the above two trials and found a significant reduction in time taken to complete the test after treatment with Cerebrolysin compared to the control group (WMD -22.36; 95% CI -34.48 to -10.23, P = 0.0003; Analysis 1.4). Comparing the Clock-Drawing Test scores between the two intervention groups in one trial (Guekht 2011) showed a treatment difference of 0.917 points (95% CI 0.448 to 1.387, P = 0.0002) in favour of Cerebrolysin, indicating a significant effect of Cerebrolysin in improving this executive function as well. The remaining trial (Vereschagin 1991) was only reported as an abstract. Its authors stated that Cerebrolysin treatment resulted in significant improvement in memory, abstract thinking and re-
action time, confirmed by EEG-mapping, but detailed data were unavailable for any meta-analysis.

2. Global function

Improvement in global function was reported as response rates in two trials: in one trial investigators used the CIBIC+ scale (Guekht 2011), and CGI was used in the other one (Xiao 1999). To pool relevant data together, we defined responders as those with a CIBIC+ score of < 4 or those judged as at least moderately improved using the CGI rating at the last visit (Xiao 1999; Guekht 2011). The meta-analysis with 379 participants showed that Cerebrolysin was significantly beneficial for the improvement of global clinical function after one or more cycles of treatment (RR 2.71; 95% CI 1.83 to 4.00, P < 0.00001; Analysis 2.1; Figure 5).

![Figure 5. Forest plot of comparison: 2 Global function, outcome: 2.1 The improvement of global function reported as responder rates.](image)

Changes in global functional performance were measured by ADL, NAI or SCAG scores in two included trials (Xiao 1999; Guekht 2011). In the former trial, Cerebrolysin was significantly superior to placebo (P < 0.0001) (Guekht 2011; Analysis 2.2), while no statistically significant difference was found between groups in the other study (ADL, P = 0.377; NAI, P = 0.355; SCAG, P = 0.767) (Xiao 1999). Since two quite different scales for evaluating such activities were used, we thought it was inappropriate to pool the data.

3. All cause death

Only one trial (Guekht 2011) specified that no deaths were reported during the experimental and follow-up periods. No data on all-cause mortality were available from the other included trials; three of them (Xiao 1999; Zhang 2003; Muresanu 2008) said no severe adverse effects were observed in either group, but did not mention deaths from other causes; the other two (Verschagin 1991; Liang 2001) made no relevant comment in their articles.

Secondary outcomes

1. Adverse events

In the present review, adverse events were categorized as 'serious' or 'not serious'. Serious adverse events were those which led to death; were life-threatening; required in-patient hospitalization or prolongation of existing hospitalization; resulted in persistent or significant disability; or any important medical event that might have jeopardized the patient or required intervention to prevent it. All other adverse events were considered to be non-serious (ICHMSG 1997). Safety was assessed in four of the included trials (Xiao 1999; Zhang 2003; Muresanu 2008; Guekht 2011) by reporting adverse events, performing physical examinations or laboratory tests, or both. The relationship of adverse events and Cerebrolysin therapy was judged by investigators. The remaining two trials (Verschagin 1991; Liang 2001) did not mention adverse events at all. During the study period of the Guekht 2011 trial, some serious adverse events occurred, such as acute pyelonephritis, malignant...
lung neoplasm, and rectosigmoid cancer (3/117 and 0/115 in the Cerebrolysin and placebo groups, respectively), but they were considered unrelated to the experimental treatment, and there was no significant difference between groups (RR 6.88; 95% CI 0.36 to 131.75, P = 0.20; Analysis 3.1). Three included trials (Xiao 1999; Zhang 2003; Muresanu 2008) observed no severe adverse effects in either group. The most commonly reported non-serious adverse events were headache, asthenia, dizziness, hypertension and hypotension. Detailed data about the number of adverse events and patients reported in two trials (Xiao 1999; Guekht 2011) allowed us to perform a meta-analysis. The results indicated that these side effects were not statistically different between Cerebrolysin and control groups (RR 0.97; 95% CI 0.49 to 1.94, P = 0.94; Analysis 3.2; Figure 6). The Guekht 2011 trial also reported withdrawals due to adverse events, which were balanced between groups (1.7% for the Cerebrolysin group and 2.5% for the control group) with a P value of 0.67 (Analysis 3.3). The Muresanu 2008 trial only stated that no severe adverse events occurred, and no significant differences in non-serious adverse events were found between groups, but relevant data were unavailable. Zhang and colleagues specified that no related adverse events were found during the three-year experimental period (Zhang 2003).

Figure 6. Forest plot of comparison: 4 Adverse events, outcome: 4.1 Non-serious adverse events.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Cerebrolysin</th>
<th>Control</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Guekht 2011</td>
<td>11</td>
<td>117</td>
<td>7</td>
<td>115</td>
</tr>
<tr>
<td>Xiao 1999</td>
<td>4</td>
<td>75</td>
<td>8</td>
<td>72</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>192</td>
<td>187</td>
<td>100.0%</td>
<td>0.97 [0.49, 1.94]</td>
</tr>
<tr>
<td>Total events</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Ch² = 2.42, df = 1 (P = 0.12), I² = 9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect Z = 0.03 (P = 0.94)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Xiao 1999 and Guekht 2011 trials also reported the change in laboratory parameters, including hematology, clinical chemistry, urinalysis, and electrocardiogram, and revealed no relevant differences between groups.

2. Quality of life

No data on quality of life during the treatment and follow-up periods were available from any of the included trials.

3. Carer burden

No data on evaluation of caregiver burden were available from the included trials.

Subgroup analyses

Significant heterogeneity was present in the analysis for the change of general cognitive function measured by ADAS-cog+ score (Analysis 1.2, I² = 86%) and for non-serious adverse events (Analysis 3.2, I² = 59%). Both might attribute to various treatment durations and follow-up periods (4 to 24 weeks) of included trials, so we undertook subgroup analyses for all outcome measures based on duration of treatment if possible.

Short-term treatment duration (only one treatment cycle or four weeks or less)

In four included trials, Cerebrolysin or placebo was given to participants for only one treatment cycle (five days a week repeated for four weeks) (Xiao 1999; Muresanu 2008) or four continuous weeks or less (Vereschagin 1991; Liang 2001). There was a slight beneficial effect of short-term treatment with Cerebrolysin on general cognitive function measured by MMSE score in one study (WMD 0.96; 95% CI 0.12 to 1.80, P = 0.03; Analysis 4.1) and ADAS-cog+ score in another study (WMD -2.38; 95% CI -4.18 to -0.58, P = 0.01; Analysis 4.2). However, a continuous 15-day treatment with Cerebrolysin had no significant effect on the response rate as measured by the HDS (RR 1.22; 95% CI 1.00 to 1.50, P = 0.05; Analysis 4.3). In one study, Cerebrolysin was significantly beneficial for global clinical impression after one cycle of treatment (RR 2.18; 95% CI 1.16 to 4.10, P = 0.02; Analysis 4.4), again in a single study. The same study reported non-serious side effects and found no significant difference between groups (RR 0.48; 95% CI 0.15 to 1.52, P = 0.21; Analysis 4.5).

Longer treatment duration (two or more treatment cycles or more than four weeks)
Two trials of longer duration administered Cerebrolysin over a total of 24 weeks (Guekht 2011) and three years (Zhang 2003), respectively. In these studies, Cerebrolysin was significantly better than placebo for global cognitive function measured by MMSE (WMD 1.48; 95% CI 0.06 to 2.91, P = 0.04; Analysis 4.1) (one study), ADAS-cog+ scores (WMD -6.11; 95% CI -8.16 to -4.06, P < 0.00001; Analysis 4.2) (one study), or by responder rates (RR 1.64; 95% CI 1.35 to 1.98, P < 0.00001; Analysis 4.3) (two studies). Two cycles of treatment with Cerebrolysin over 24 weeks also significantly improved clinically assessed global function of patients with VaD (WMD 3.07; 95% CI 1.86 to 5.07, P < 0.00001; Analysis 4.4), and led to no significant difference in occurrence of non-serious side effects between the Cerebrolysin and control groups (RR 1.54; 95% CI 0.62 to 3.84, P = 0.35; Analysis 4.5).

Sensitivity analyses
Based on the methodological quality, we also undertook sensitivity analyses for each outcome measure, for which meta-analysis pooled data from more than one trial. Since only one included study (Guekht 2011) of the present review was rated as good quality, we repeated the calculation after omitting all the other trials of fair or poor quality. However, the overall results and conclusions remained unchanged (Analysis 5.1; Analysis 5.2; Analysis 5.3; Analysis 5.4; Analysis 5.5; Analysis 5.6).

D I S C U S S I O N
Cerebrolysin seemed to be a promising intervention for treating vascular cognitive impairment based on reports of neurotrophic and pro-cognitive effects, but relevant studies yielded inconsistent results of such efficacy, thus prompting the present systematic review of randomized controlled trials. We have done our best to collect and extract all possible data to conduct a more complete systematic analysis.

Summary of main results
We performed a systematic search and selection process following the protocol, and then included six randomized controlled trials (Vereschagin 1991; Xiao 1999; Liang 2001; Zhang 2003; Muresanu 2008; Guekht 2011) which evaluated the efficacy of Cerebrolysin for VaD. Despite different designs, methods and durations of follow-up, sufficient similarities (such as definitive diagnosis and similar degree of VaD), consistent outcome measures and widely acceptable evaluative instruments, and the treatment regimen, etc) in the included studies allowed several meta-analyses to be conducted.

The primary outcome we always focus on for the treatment of patients with dementia is the improvement of cognitive function. The results of our review revealed that, for patients with VaD, Cerebrolysin could significantly improve both general cognitive function and a specific cognitive function commonly impaired in VaD, namely executive function, measured by mean scores on evaluation scales or by responder rates. It also improved patients’ global function measured by CIBIC+ or CGI scales. The subgroup analyses based on varied treatment durations suggested a larger effect of long-term treatment than short-term therapy, which resulted in no or slight beneficial effect on both general cognitive function and global clinical impression. For the daily functional performance evaluated by ADL scales, however, results from two included trials (Xiao 1999; Guekht 2011) differed, but the different measurement scales used in the two trials did not allow us to perform a meta-analysis. Both trials had a relatively large sample (232 and 147 participants, respectively) and were of good or fair methodological quality, so we draw no conclusion about the effect on functional performance. No data on quality of life or caregiver burden were available from any of the included trials. In summary, we found positive results for Cerebrolysin compared to placebo or no treatment on most of the efficacy measures.

No serious adverse effects attributable to the experimental therapy were reported in these trials during the treatment and follow-up periods, and non-serious adverse effects were not significantly more common amongst the Cerebrolysin than the control participants. This indicated that Cerebrolysin was safe and well tolerated by patients with VaD.

Overall completeness and applicability of evidence
Most of the included trials addressed relevant functional endpoints for VaD and reported on adverse effects, but there were no data on quality of life or caregiver burden. Of the six included trials, two only enrolled patients diagnosed with multi-infarct dementia (Vereschagin 1991; Liang 2001), but lack of data meant that these two trials were not included in most of the meta-analyses, except the analysis of the improvement of general cognitive function reported as responder rates (data from Liang 2001 were included; Analysis 1.3). The other four trials (Xiao 1999; Zhang 2003; Muresanu 2008; Guekht 2011) included participants with any subtype of VaD of mild to moderate severity. The mean age of participants ranged from 60 to 70 years. So the results of the present review were mainly based on older patients with mild to moderate VaD, for whom we could draw conclusions. Relevant results could not be determined for patients with any particular kind of VaD.

As mentioned above, Cerebrolysin is recommended to be given once daily in a dose of 10 ml to 30 ml intravenously; one regular treatment cycle means five days a week repeated for four weeks, and two to four treatment cycles might be repeated per year (www.ebewe-neuro.com). Appropriate doses and administration method were used for all the included trials, but the duration of each treatment cycle and its repetition varied between trials.
Two trials treated patients for a single cycle (Xiao 1999; Muresanu 2008) and one for two cycles separated by an eight-week interval (Guekht 2011). The longest trial (Zhang 2003) used a continuous 10 days as one treatment cycle, and repeated it twice each year for a total of three years, but it had a small sample of 29 participants. The other two trials treated participants for 15 (Liang 2001) and 28 days (Vereschagin 1991) continuously. This review does not allow us to give a recommendation for the optimum treatment schedule. The variety of follow-up durations in the included trials made it difficult to evaluate outcomes at a single time point. We selected the longest follow-up (from 15 days to 3 years) from each study and pooled their outcome data in meta-analyses. This might induce a lack of consistency across studies, giving rise to heterogeneity, so we performed subgroup analyses based on treatment duration. Most conclusions for the outcome measures did not change; only the analysis (Analysis 4.3) for the improvement of general cognitive function reported as responder rates after a short-term treatment with Cerebrolysin did not get a positive result, but this result came from the only trial of short-term follow-up and poor methodological quality (Liang 2001). In practice, therapy for patients with VaD is long-term, so large-sample and long-term follow-up studies of good quality are still needed; optimum treatment schedule should be tested as well. Further, to improve patients’ quality of life and to reduce carers’ burden are two of the most important goals for VaD treatment, but there was a lack of relevant data from included trials. Therefore, we could not draw any conclusions about these outcomes.

Quality of the evidence

All six included studies were randomized controlled trials. However, only one trial (Guekht 2011) was rated as good quality because of its design and endeavour to avoid selection, performance, detection, attrition, reporting and other bias. One was rated as poor quality (Liang 2001), since there was high risk of bias due to its poor performance in blinding and selective reporting. The other four trials were rated as fair because they had an unclear risk of bias for one or more key domains, commonly for allocation concealment, blinding of participants and personnel, or incomplete outcome data. Although the overall results and conclusions did not change in the sensitivity analyses based on methodological quality, all the results of meta-analyses in the present review were based on data from a single trial or several trials with a limited number of participants. Hence, the identified evidence did not permit a totally robust conclusion to be reached on the efficacy of Cerebrolysin for treating VaD.

Potential biases in the review process

We have attempted to do our best to search the pertinent literature, including published and unpublished studies, without any language restrictions, and contacted the investigators, as required to acquire additional information. Publication bias should still be taken into account, however, because most of the included studies were published in English or Chinese, and not enough useful information was sent back from the trial authors. It was impossible to perform a funnel plot analysis to evaluate the risk of publication bias because of the limited number of trials for each outcome measure.

Agreements and disagreements with other studies or reviews

A large, non-comparative study (Rainer 1997) with 645 participants also evaluated the efficacy of Cerebrolysin in patients with dementia, including 53% patients with VaD. A 10 ml to 15 ml daily dose of Cerebrolysin was given for at least seven days (mean treatment duration of 17.8 days). Its results showed that improvement in symptoms were found in 47% to 65% of participants, and approximately 80% patients were deemed to improve in global clinical function measured by CGI. Several non-systematic reviews (Plosker 2009; Plosker 2010) descriptively analyzed data from studies investigating Cerebrolysin in treating VaD, and most of them concluded that Cerebrolysin appeared to be a well tolerated and effective treatment option for VaD. The findings are also supported by recording of the electroencephalogram (EEG) (Vereschagin 1991; Muresanu 2008a; Muresanu 2010). This was not evaluated in the present review, since it is not a direct measure of cognitive function. In patients with dementia, a patchy pattern of focal slowing is often recorded by EEG; it is thought to reflect changes in regional cerebral glucose metabolism (Renna 2003), and its main parameters, including delta power, theta power and power ratio (PR) scores, have been shown to correlate significantly with cognitive scores. The results of the Muresanu 2008 trial demonstrated a significant reduction of EEG PR scores after the therapy with Cerebrolysin, but no changes in the placebo-treated patients, in line with the reported improvement in cognitive function. Data from other studies and reviews have shown positive clinical effects and good tolerability of Cerebrolysin in the treatment of AD (Álvarez 2006; Wei 2007; Álvarez 2011a; Álvarez 2011b). This is encouraging for VaD treatment since it has been gradually recognized that both neurodegenerative mechanisms and vascular factors contribute to the majority of cases of dementia, with a different relative weight in AD and VaD; in fact, mixed dementia may be the most common type of dementia (Moorhouse 2008; Viswanathan 2009).

Authors’ Conclusions

Cerebrolysin for vascular dementia (Review)

Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Implications for practice

Cerebrolysin may have positive effects on the improvement of cognitive function and global function in older patients with VaD of mild to moderate severity. Most side effects related to Cerebrolysin are rated as mild to moderate in severity. However, due to the limited number of included trials, variable treatment duration and short-term follow-up, there is insufficient evidence to recommend Cerebrolysin as a routine treatment for patients with VaD. Further, it is difficult for it to be used widely since this medicine must be given by intravenous infusion with a long-term, demanding treatment schedule.

Implications for research

Well-designed, randomized, placebo-controlled trials of Cerebrolysin for dementia, with a greater number of participants and relatively long-term follow-up, are needed to evaluate the efficacy and detect the adverse events of Cerebrolysin in treating patients with VaD. Future investigators should pay more attention to the exploration of appropriate treatment schedules, evaluation of quality of life and caregiver burden. VaD can also occur in younger people, so young patients fulfilling the diagnosis criteria should not be excluded, but be stratified for assessment. Moreover, the quality of reporting should be improved, so that more useful data can be obtained.

Acknowledgements

We are grateful for the assistance of the Cochrane Dementia and Cognitive Improvement Group.

References

References to studies included in this review

Guekht 2011 [published data only]

Liang 2001 [published data only]
Liang SY, Li ZJ, Yan HJ, Pei XM. The efficacy of Cerebrolysin in multi-infarct dementia [15588270]. Heilongjiang Medicine and Pharmacy 2001; 24(5):75.

Muresanu 2008 [published data only]

Vereschagin 1991 [published data only]

Xiao 1999 [published data only]

Zhang 2003 [published data only]

References to studies excluded from this review

Cao 2000 [published data only]

Chen 2006 [published data only]
Cerebrolysin for vascular dementia (Review)

Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Dai 2011 [published data only]

Damulin 2008 [published data only]

Jia 1991 [published data only]

Li 1996 [published data only]

Meng 2001 [published data only]

Pan 1999 [published data only]
Pan AH. Efficacy of Cerebrolysin in 20 patients with vascular dementia [Published data only]. Herald of Medicine 1999;3(18):147.

Suvorova 2010 [published data only]

Tapu 2009 [published data only]

Verecschagin 2001 [published data only]

Wang 1996 [published data only]

Wang 2003 [published data only]

Xian 2004 [published data only]

Zheng 1999 [published data only]
Zheng YF, Xie JM, Li WD. Efficacy of cerebrolysin for vascular dementia [Published data only]. Heilongjiang Medicine and Pharmacy 1999;22(3):103.

Additional references

Aggarwal 2007

Akai 1992

APA 1980

APA 1987

APA 1994

Benisty 2008

Chui 1992

Deeks 2011

Dong 2007

Feigin 2005
Feigin V, Ramanabapathy Y, Anderson C. Does blood pressure lowering treatment prevent dementia or cognitive
Cerebrolysin for vascular dementia (Review)

Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Folstein 1975

Fragoso 2009

Hachinski 1975

Hao 2009

Harthbauer 2001

Higgins 2002

Higgins 2003

Higgins 2011a

Higgins 2011b

Higgins 2011c

Higgins 2011d

Hong 2005

ICH EWG 1997

Kavirajan 2007

Korczyń 2012

Ladurner 2005

Masliah 1999

McGuinness 2009

Mohs 1997

Moorhouse 2008
Muresanu 2008a

Muresanu 2010

Nasreddine 2005

Neuropathology Group 2001

O’Brien 2003

O’Brien 2006

Pantoni 1993

Plosker 2009

Plosker 2010

Rainer 1997

Renna 2003

Rockenstein 2003

Rockenstein 2005

Rockenstein 2006

Román 1993

Román 2002

Sakou 1993

Srikanth 2006

Sterne 2011

Tatebayashi 2003

Veinbergs 2000

Viswanathan 2009

Wei 2007
WHO 1992

Windisch 1998

Wu 2007
Wu TX, Li QP, Yuan ZY. Yizhi capsule for vascular dementia. *Cochrane Database of Systematic Reviews* 2007, Issue 2. [DOI: 10.1002/14651858.CD005382.pub2]

Zhang 2012

Ziganshina 2010

Álvarez 2003

Álvarez 2006

Álvarez 2011a

Álvarez 2011b

* Indicates the major publication for the study